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Introduction. Shortly before Einstein’s death in 1955, Einstein and Max Born
(joined later by Pauli) selected the simple particle-in-a-box problem as a context
within which to debate the merits of Einstein’s contention that in certain
fundamental respects the quantum theory of the time (which remains the
quantum theory of this time) is defective/incomplete.1 An elaborately detailed
echo of that debate can be detected in a paper that Born wrote in collabortion
with Wolfgang Ludwig in 1958.2

For at least fifty years it has been my intuitive conviction that—just as
a heat pulse injected into a conductive rod leads ultimately to a quiescent
uniform temperature distribution, and an initially non-uniform gas distribution
in an enclosure will become ultimately uniform—the probability density of a
boxed quantum wavepacket will in asymptotic time become quiescently flat,3
this though it is unarguable quantum theory predicts periodic recurrence of
the initial wavepacket. My problem has been to identify the “missing physical
element” that accounts for—that when included would entail—my conjectured
asymptotic flatness. Recently I have—with decoherence in mind—been led
to use Mathematica -based techniques to revisit aspects of the Born-Ludwig
argument, and have in the course of that experimental work exposed the
“normalization problem” that it is my objective here to describe and resolve.

The problem stated. Let the normalized function ψ(x, 0) describe the initial
state of a mass point m that moves freely on the unrestricted x-axis. At time
t the unitary evolution of ψ(x, 0) has sent

ψ(x, 0) −→ ψ(x, t) generated by H = 1
2m p2

1 The debate was conducted by an exchange of letters, which are reproduced
(with editorial comments by Born) as letters 105-116 on pages 205-228 of
The Born-Einstein Letters (1971).

2 “Zur Quantenmechanik des kräftefreien Teilchens,” Zeitschrift für Physik
150, 106 (1958). Notes from my own close study of that paper can be found
on pages 9-32 of my Feynman Formalism for Polygonal Domains (1971-1976).

3 I would expect experimentalists to be hard-pressed to produce evidence
that contradicts that expectation.
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which is what I will call a “Schrödinger function,” meaning that that it is a
solution of the (free particle) Schrödinger equation −(!2/2m)∂xxψ = i! ∂tψ.
With Born & Ludwig we construct the (unnormalized) odd function

ϕ(x, t) = ψ(x, t) − ψ(−x, t)

and from ϕ(x, t) we construct the (unnormalized) periodic Schrödinger function

ψboxed(x, t) =
∞∑

n=−∞
ϕ(x + 2a, t) = ψboxed(x + 2a, t)

From ψboxed(x, t) = −ψboxed(−x, t) we obtain

ψboxed(0, t) = 0 : all t

while ψboxed(a, t) = −ψboxed(−a, t) = −ψboxed(−a + 2a, t) = −ψboxed(a, t)
gives

ψboxed(a, t) = 0 : all t

So ψboxed(x, t) is a Schrödinger function that satisfies the familiar “box
boundary conditions.”

Clearly, the (complex) values assumed by ψboxed(x, t) on [−a, 0] are the
negated mirror images of the values assumed on [0, a ], while the (real) values
assumed by Pboxed[x, t] ≡ |ψboxed(x, t)|2 on [−a, 0] are the non-negated mirror
images of the values assumed on [0, a ]. It follows that at any time t

∫ (n+1)a

na
Pboxed(x, t) is the same for all n

and therefore that ψboxed(x, t) is not normalizable:
∫ ∞
−∞ Pboxed(x, t)dx = ∞.4

Born & Ludwig appear to suggest that one could use functions of the form

ψBL(x, t) =

{ 0 : x < 0
ψboxed(x, t) : 0 ! x ! a
0 : a < x

to develop the quantum dynamics of a boxed particle. Such functions are, after
all, Schrödinger functions, and do satisfy the required boundary conditiopns.
Numerical computation reveals, however, that

∫ a
0 PBL(x, t)dx is not constant ,

but as the seed wavepacket ψ(x, t) delocalizes (as I shown in an earlier note5 it
will in all cases inevitably do) steadily decreases in value:

lim
t↑∞

∫ a

0
PBL(x, t)dx = 0

My problem: how to account for that surprising fact.

4 In those respects ψboxed(x, t) mimics properties of (say) sin(πx/a).
5 “Free particle wavepackets” (March 2013).
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The problem resolved. The dynamical evolution of the states of isolated
quantum systems is unitary

|ψ)0 −→ |ψ)t = U(t)|ψ)0
from which norm-preservation follows as an immediate corrolary:

t(ψ|ψ)t = 0(ψ|U+(t)U(t)|ψ)0 = 0(ψ|ψ)0 : all t

That elementary argument pertains with equal force to states that are presented
as linear combinations of states

|ψ)t =
∑

k

ck|ψk)t :
∑

k

|ck|2 = 1

and, more particuarly, to states that are presented as linear combinations of
buzzing eigenstates. Looking to the latter situation in finer detail, if

H |n) = En|n) and (m|n) = δmn

then
|ψ)t =

∑

k

cke−iωkt|k) with
{

ck = (k|ψ)0
ωk = Ek/!

and
t(ψ|ψ)t =

∑

m,n

c̄mcne−iωmnt(m|n) where ωmn = ωm − ωn

=
∑

k

|ck|2 = 1 by orthonormality of the eigenstates

Passingto thex representation—the representation in which Born&Ludwig
elected to work—we have

P (x, t) = |ψ(x, t)|2

=
∑

m,n

c̄mcne−iωmnt ψ̄m(x)ψn(x)

=
∑

k

C 2
k Pk(x) + 2

∑

m>n

CmCn cos(ωmnt − γmn) · ψm(x)ψn(x)

where we have written ck = Ceiγk , γmn = γm−γn and assumed without loss of
generality that the eigenfunctions ψn(x) = (x|n) are real-valued. The preceding
equation describes the temporal “sloshing” of the probability density associated
with the evolving wavepacket ψ(x, t), and it is again by orthonormality that it
entails probability conservation (norm preservation):

∫

R
P (x, t)dx =

∑

k

C 2
k

∫

R
ψk(x)ψk(x)dx

+ 2
∑

m>n

CmCn cos(ωmnt − γmn) ·
∫

R
ψm(x)ψn(x)dx

=
∑

k

C 2
k + 2

∑

m>n

CmCn cos(ωmnt − γmn) · δmn

= 1
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where R refers to the “hermiticity domain”—the domain on which the
hermiticity of H acquires it meaning, on which the eigenfunctions of H live,
and with respect to which it becomes possible (by hermiticity) to write

(ψm,ψn) ≡
∫

R
ψ̄m(x)ψn(x)dx = δmn

Born & Ludwig, however, take as their starting point an infinite set of free
particle wavepackets {ψ(x + 2na, t),ψ(−x + 2na, t)} for which the hermiticity
domain R includes the entire real line −∞ < x < +∞, and which are, moreover,
not eigenfunctions of H free = 1

2m p2. From those they excise fragments, which
in terms of the box function

box(x, a) ≡ θ(x) − θ(x − a) =

{ 0 : x < 0
1 : 0 ! x ! a
0 : a < x

can be described

ψ±
n (x, t) = box(x, a) · ψ(±x + 2na, t) (1.1)

Those functions are indeed Schrödinger functions, in the sense that at points
interior to the interval [0, a] they do satisfy the local condition

−(!2/2m)∂xxψ = i! ∂tψ

But they are not eigenfunctions of H free, and they are not orthonormal:
∫ a

0
ψ̄eithersign

m (x, t) ψeithersign
n (x, t)dx %= δmn

We are therefore deprived of grounds on which to assert that the norm of

ψBL(x, t) =
∞∑

n=−∞

{
ψ+

n (x, t) − ψ−
n (x, t)

}
(1.2)

is time-independent.

Gaussian models. Gaussian wavepackets have tails that prevent their being
fitted into boxes, except approximately (narrow Gaussians, centrally positioned,
may have tails that are negligibly small at the box boundaries. . .but under free
evolution they do not forever remain negligibly small). One way to circumvent
this problem is to replace the initial Gaussian

ψ(x, 0) =
√

Gaussian(x ; µ,σ) : 0 & µ & a

with the root
√

a−1β(x/a ; p, q) of a beta distribution, since such distributions
vanish automatically at x = 0 and x = a and for some values of {p, q} provide
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excellent approximations to normal distributions.6 Born & Ludwig describe
what on its face might appear to be an attractive alternative procedure: they
would have us take as our “seed” the “launched Gaussian” wavepacket7

G(x, t) =
[

1
σ[1+i(t/τ)]

√
2π

] 1
2 (2.1)

· exp
{

1
1+i(t/τ)

[
− x2

4σ2 + i 1
!
(
mvx − 1

2mv2t
)]}

and work from (1). Defining

σ(t) = σ
√

1 + (t/τ)2

and using σ[1+i(t/τ)] = σ(t)ei arctan(t/τ), [1+i(t/τ)]–1 = [1+(t/τ)2]–1[1−i(t/τ)]
we find that (2.1) can be brought to the polar form

=
[

1
σ(t)

√
2π

] 1
2 exp

{
1

1+(t/τ)2

[
− x2

4σ2 + t/τ
!

(
mvx − 1

2mv2t
)]}

· exp
{

i
(

1
1+(t/τ)2

[
(t/τ)

x2

4σ2 + 1
!
(
mvx − 1

2mv2t
)]

− 1
2 arctan(t/τ)

)}
(2.2)

= g(x, t) · eif(x,t)

which is more useful for the purposes at hand. With Mathematica’s assistance
we establish that for all v and b (which is intended to mark a point b ∈ [0, a])

{ !2

2m∂xx + i!∂t

}
G(±x + b, t) = 0 iff τ = 2mσ2/!

and that the latter condition permits g(x, t) to be written

g(x, t) =
[

1
σ(t)

√
2π

] 1
2 exp

{
− 1

4

[
x−v t
σ(t)

]2}

We are led thus to the normally distributed probability density

PG(x − b, t) = |G(x − b, t)|2 = 1
σ(t)

√
2π

· exp
{
− 1

2

[
x−b−vt

σ(t)

]2}

of which the
mean = b + vt

translates with uniform velocity v while the variance σ2(t) grows hyperbolically
and the rate of growth of the uncertainty is asymptotically linear

uncertainty = σ(t) ≈ t/τ for t ) τ

and inversely proportional to m.

6 This was the procedure adopted by Cimarron Wortham in his Reed College
thesis, “Motion of launched wavepackets in the infinite square well,” (2004).

7 See my “Gaussian wavepackets” (1998), equation (22) on page 9.
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Proceeding now in immitation of the line of argument introduced at (1),
we construct

ψBL(x, t) = box(x, a) ·
∞∑

n=−∞
Hn(x, t)

where

Hn(x, t) = G(cn + x, t) − G(cn − x, t) with cn = 2na − b − vt

= g(cn + x, t) · eif(cn+x,t) − g(cn − x, t) · eif(cn−x,t)

In this notation we have

|ψBL(x, t)|2 = box(x, a) ·
∞∑

m,n=−∞
H̄m(x, t)Hn(x, t)

= box(x, a) ·
{∑

k

H̄kHk +
∑

m>n

[
H̄mHn + H̄nHm

]}

positive real =
∑

reals

The function ψBL(x, t) satisfies the free particle Schrödinger equation and the
box boundary conditions ψBL(0, t) = ψBL(a, t) = 0 but is—as will emerge—not
normalized; the “normalization constant” is in fact t-dependent

N(t) =
∫ a

0
|ψBL(x, t)|2 dx %= 1

On the other hand, the normalized function

ΨBL(x, t) = N− 1
2 (t) · ψBL(x, t)

satisfies the box boundary conditions but not the Schrödinger equation:
{
(!2/2m)∂xx + i!∂t

}
ΨBL(x, t) = 1

2 i!ΨBL(x, t) · ∂t logN(t)
%= 0

This (within the Gaussian context in which we are working) marks the point
at which the Born-Ludwig scheme fails.

Looking now to the finer details, we (after some Mathematica -assisted
computation) have

H̄mHn + H̄nHm = 2g(cm + x)g(cn + x) cos
[
f(cm + x) − f(cn + x)

]

− 2g(cm + x)g(cn − x) cos
[
f(cm + x) − f(cn − x)

]

− 2g(cm − x)g(cn + x) cos
[
f(cm − x) − f(cn + x)

]

+ 2g(cm − x)g(cn − x) cos
[
f(cm − x) − f(cn − x)

]

whence

H̄kHk = g2(ck + x) + g2(ck − x)
− 2g(ck + x)g(ck − x) cos

[
f(ck + x − f(ck − x))

]

where I have surpressed all t arguments. The cosine factors (which are bounded
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by ±1) are multiplied here by factors of the form g(x − α)g(x − β) which (by
a completion of squares argument) can be developed8

g(x − α)g(x − β) =
[

1
(σ

√
2)·

√
2π

] 1
2 exp

{
− 1

4

[ α−β√
2 σ

]2} ·
[

1
(σ/

√
2) ·

√
2π

] 1
2 exp

{
− 1

4

[
1

σ/
√

2

(
x − α−β

2

)]2}

=
√

G
(
α− β ; σ

√
2

)
·
√

G
(
x− α+β

2 ; σ/
√

2
)

where again, the t-dependence of α, β and σ has been surpressed.

8 This is a special case of the general Gaussian product formula (see my
Thermal Physics (2003), Chapter 3, pages 111-114)

G(x − m′;σ′) · G(x − m′′;σ′′)

= G
(
m′ − m′′;

√
σ′2 + σ′′2

)
· G(x − m;σ)

where now G(x − m;σ) = [σ
√

2π ]−1/2 exp
{
− 1

2

[
x−m

σ

]2} is normal, and

m = m′σ′′2 + m′′σ′2

σ′2 + σ′′2

σ =
√

σ′2σ′′2

σ′2 + σ′′2 ⇐⇒ 1
σ2

= 1
σ′2 + 1

σ′′2


